

Deep Reinforcement Learning for

Networking

Mariam Kiran

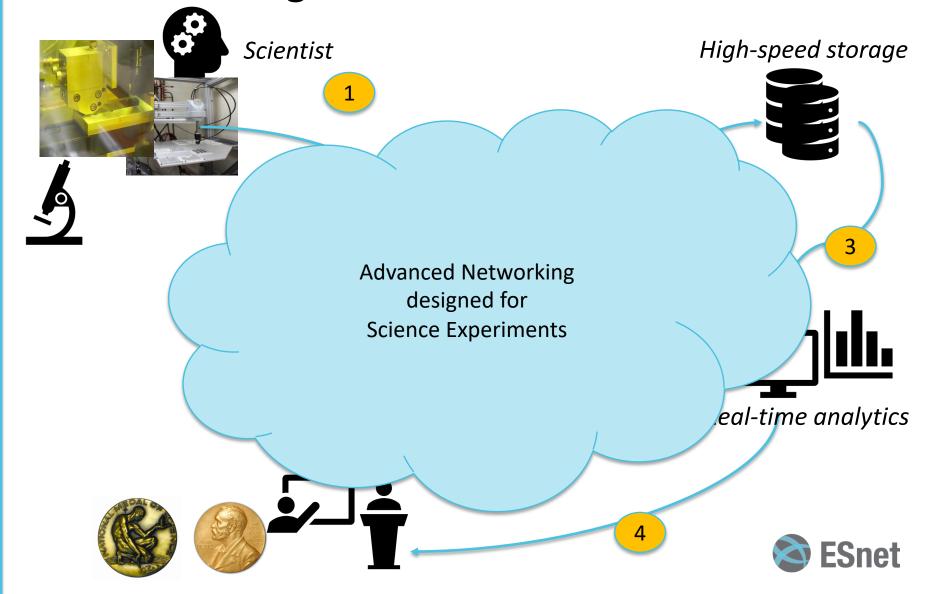
Research Scientist in Scientific Networking Division

Informal Takeaways

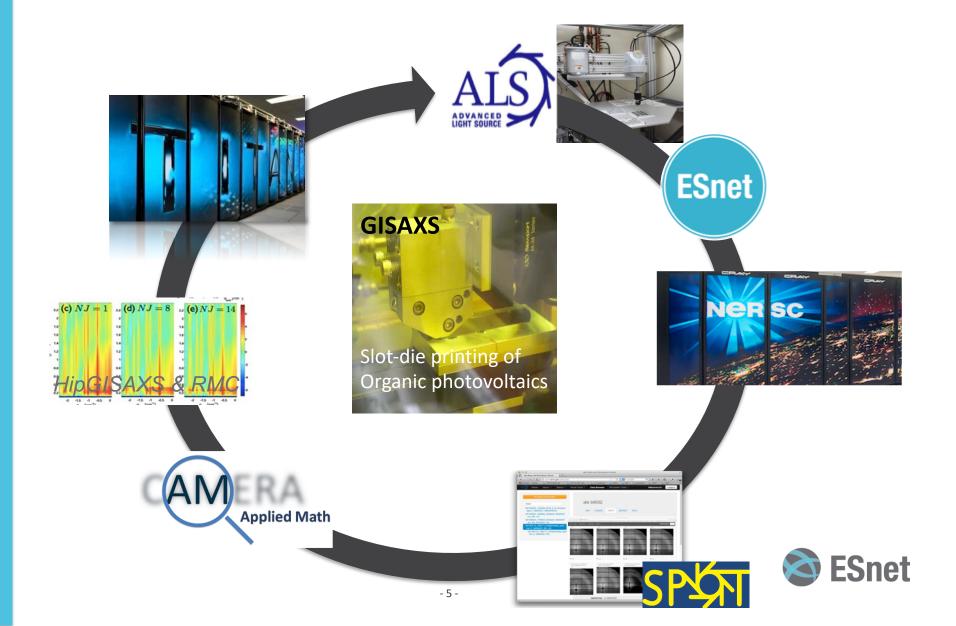
- Networking Research: Is it all solved?
 - Glimpse into how Science R&E networks work
- Can machine (or deep) learning help with some network challenges?
 - Supervised, unsupervised and reinforcement learning*
- What are the challenges?
 - Data issues
 - Experimental testbeds
 - Real-world deployments
- Apart from Networks, what else are we exploring?

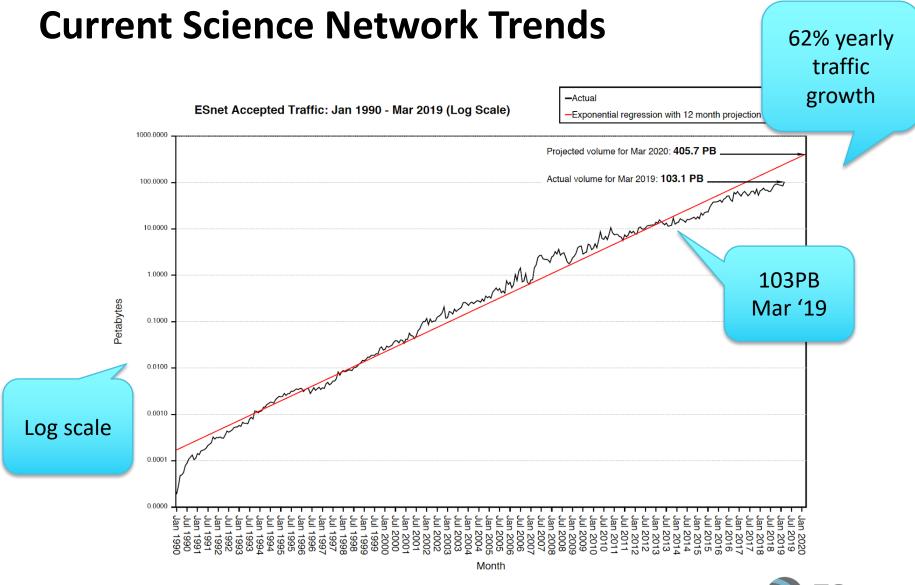
Networking: A closer look

Network is the nervous system for Science at Large-scale



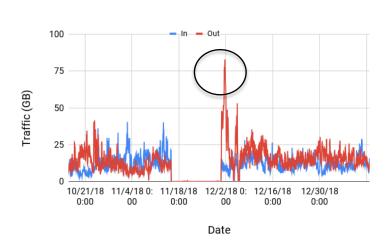
Example Application



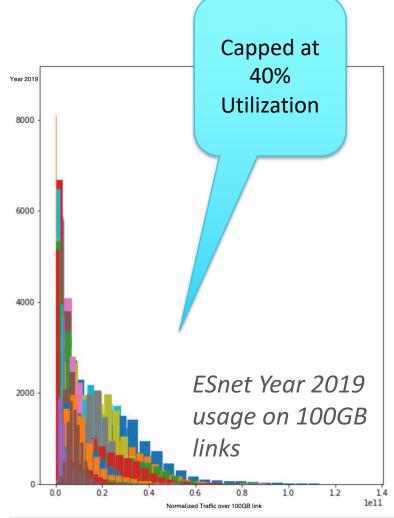


Wide area Networks (WAN) *for Science*: What challenges do they see?

Resources are often underutilized

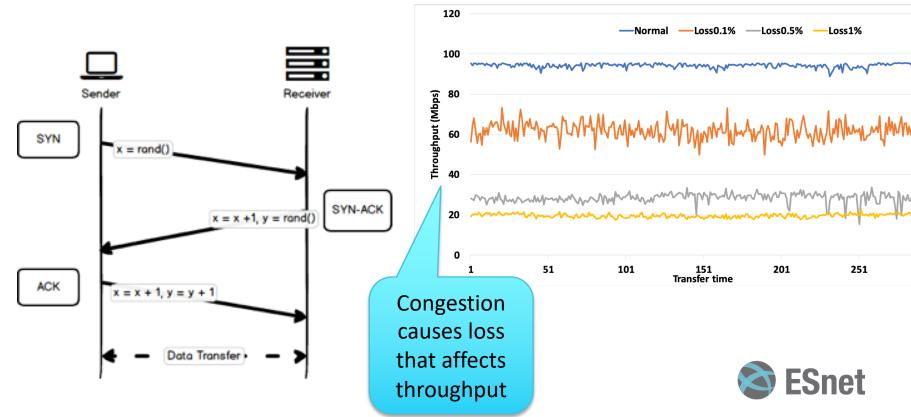


- Networks are designed to be resilient
- Traffic is highly variable and 'bursty' (big versus small transfers)
- Under-utilized resources
- Flow Congestion leads to packet loss

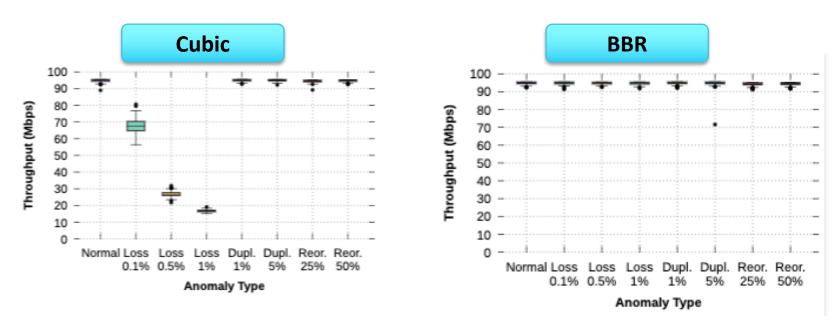


Transfer Performance can be Fragile

- Science uses Transmission Control Protocol (TCP) to send data
- 95% of science traffic uses TCP



Different TCP algorithms for Performance

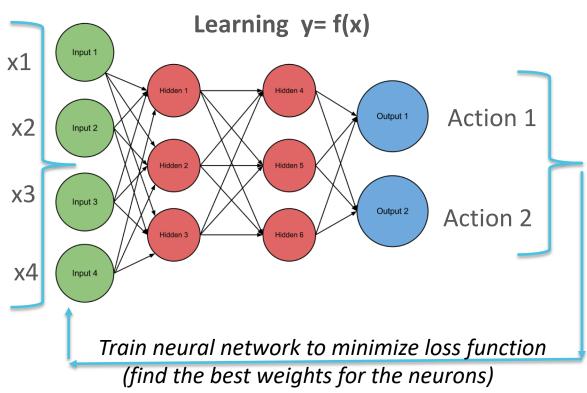


- Each TCP uses complex algorithms to optimize performance (slow down or quicken data sending)
- Examples include video buffering on Youtube, VOIP (zoom) or big file transfers in few hours (Astronomy/physics from LHC)

ML (Deep) learning to help

Uses of Deep Learning

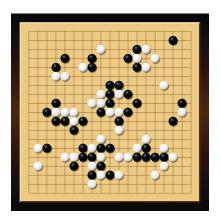
Objective:



Compared to general Machine Learning

Trained to recognize cats

Trained to play games



Deep learning introduces 'data-driven learning' to build bespoke solutions

ML and **Networking** relationship

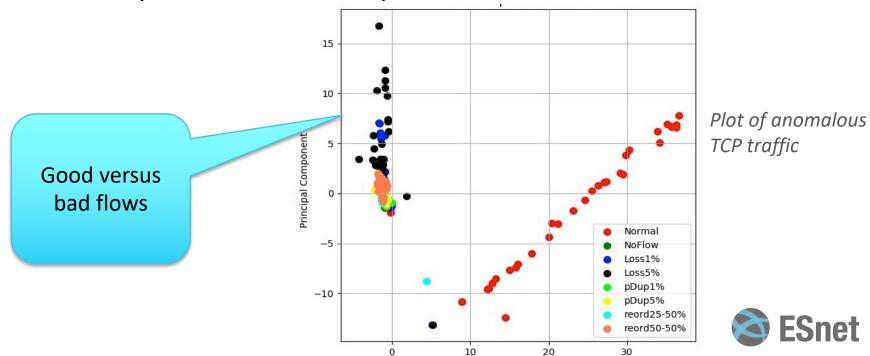
- Used in many specific applications
 - Security (to identify anomalies)
 - Classify traffic or user behavior on network
 - Recognize problem area

- But a lot of these are on small-scale networks and work in simulated environments
 - Problems with robustness of ML
 - Trusting the ML
 - Understanding how it works
 - And more...

Supervised Learning

When Labelled Data is Available

- Learning to recognize the labels
- Classification, object detection, anomaly detection
- Works very well if we can identify clear class boundaries

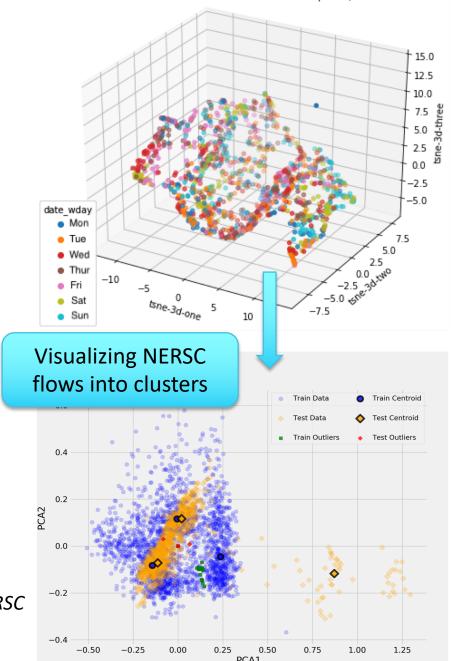


Principal Component 1

Unsupervised Learning

When NO labelled data in Available

- Learn underlying rules in the data
- Clustering, feature identification, recognize anomalies in test data
- Works well when working with domain scientists after clusters are recognized

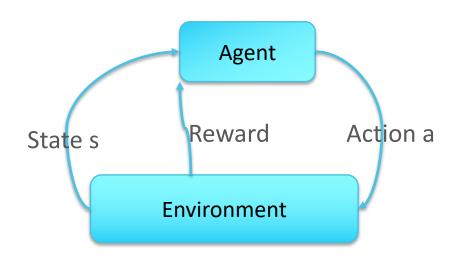


Plot of NERSC TCP flow transfers

Reinforcement learning (RL)*

When NO data is available

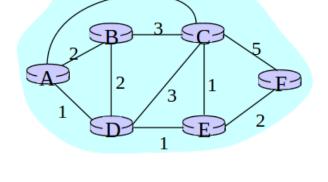
- Learn via trial and error
- Interactions with the environment
- Agent views the state of the environment and chooses an action
- Each action, agent gets a reward
- Over time, agent learns optimal actions that give best rewards and what to do next



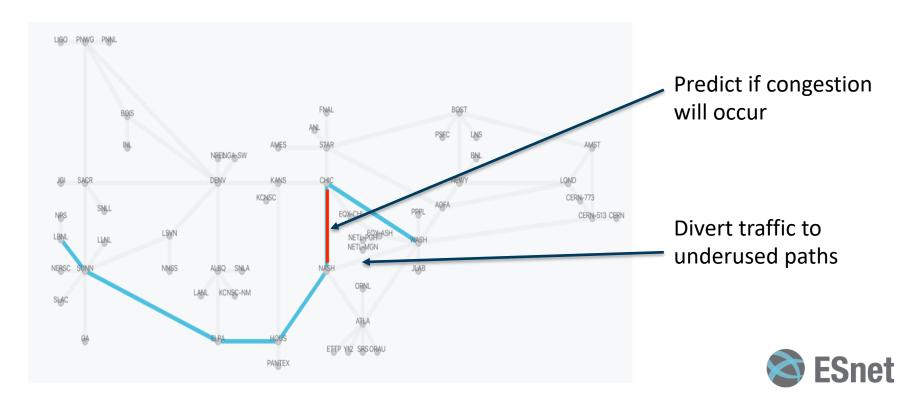
Mapping Deep RL to Networks

RL for Traffic Engineering

- Link-state (Dijkstra)-OSPF
 - Shortest possible route
 - Complete view of network topology
 - Central traffic engineering
- Distance-vector (Bellman-Ford)-RIP
 - Routers only know their neighbors
 - Shortest possible route to destination via iterative calculations
 - Each node updates routing tables
- New opportunities with Software defined networking + RL
 - RL decisions to determining best routes

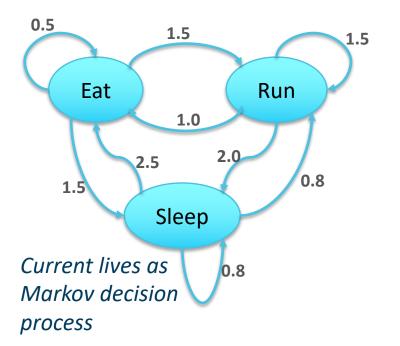


Network 'Self' learns to reduce Congestion



But first Working with Dynamic Systems

- Supervised and Unsupervised learning:
 - Good to find patterns in data sets
- Reinforcement: Teach systems how to perform (i.e. games, controlling systems, dynamic systems)



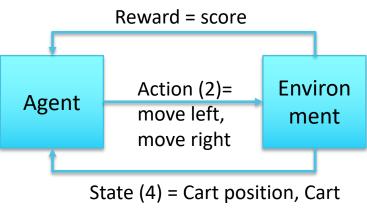
Possible sequence of events:

- Eat-Run-Sleep
- Run-Sleep-Eat

Total Reward = $r_{t=1} + r_{t=2} + r_{t=3} \dots + \dots + r_{t=T}$ Train yourself to get the max reward

Useful in Games: Cartpole Example

- Inverted pendulum problem (control theory)
- Goal: balance the pole upright



State (4) = Cart position, Cart velocity, Pole angle, Pole velocity

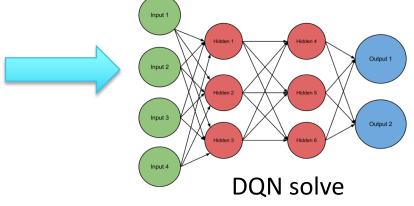
Cartpole (2): Learning state-action pairs

Learning the Q function (value function or Bellman equation):

$$Q(s, a) = R(s, a) + \gamma \max_{a'} Q(s', a')$$

When state and action space explodes, replace with a neural network

state	action	value	
state0	Move left	10	
state1	Move right	2	
•••		••	
• • •	• •		



(state, action, reward, state_next)

Episodes and Experience

- At time t,
 - − Agent sees environment state, $s_t \in S$
 - Agent chooses an action to perform, $a ∈ A(s_t)$.
 - As a consequence of its action, the environment changes its state, $s_{(t+1)}$
 - Agent receives a reward or payoff, r_t.
- Episodic learning over time

$$Q_t(s, a) = Q_{t-1}(s, a) + \alpha (R(s, a) + \gamma \max Q(s', a') - Q_{t-1}(s, a))$$

- Agents keep 'experience-replay' buffer to remember past actions
- Hyperparameter optimization*:
 - Alpha: Learning rate, how quickly can agent learn
 - Gamma: prioritize immediate rewards versus future rewards
 - Epsilon: exploration factor

^{*} Upcoming paper on effect of hyperparameters on RL

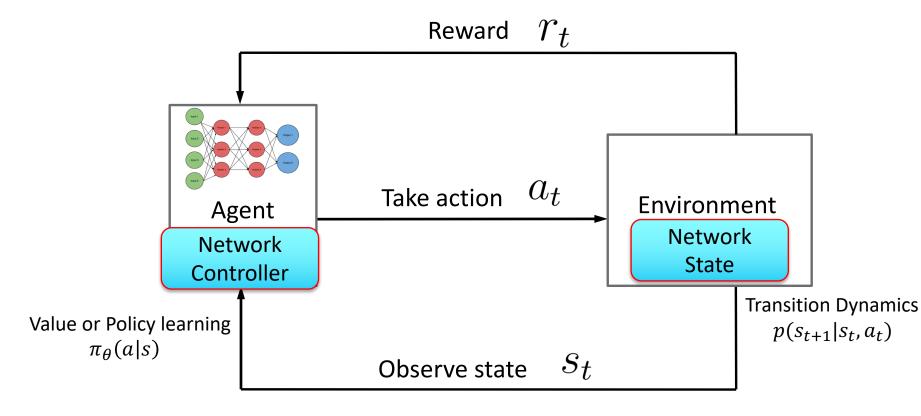
Different RL algorithms

Technique*	model	policy	Action space	observations	operators
Q-learning	free	Off-policy	discrete	discrete	Q-value
DQN	free	Off-policy	discrete	continuous	Q-value
DDPG	free	Off-policy	continuous	continuous	Q-value
TRPO	free	Off-policy	continuous	continuous	advantage
A3C	free	Off-policy	continuous	continuous	advantage

- Most are developed in robotics and games (All work in simulated world)
- No real-world deployments

Challenge: Conversion to a Learning Problem

Neural Network Learning a (WAN) Network

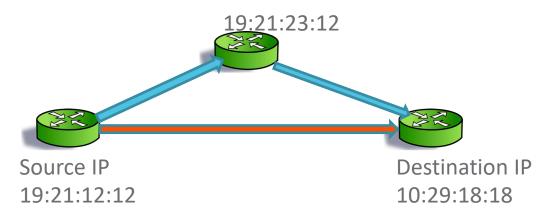


Goal: maximize the cumulative reward

Each time step, RL agent collects states, generates an action and updates policy based on reward

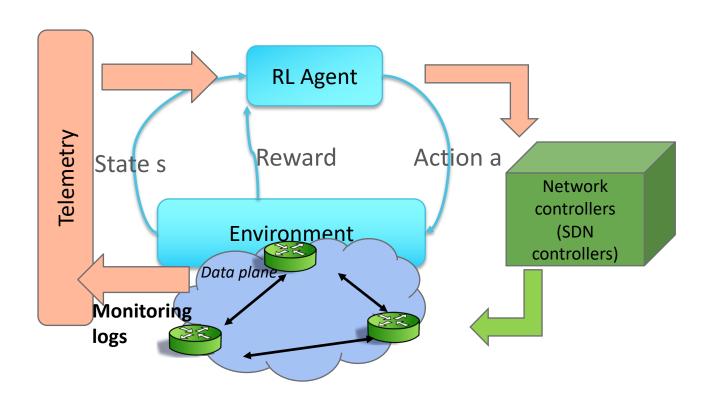
Convert to Learning problem

- Networks have multiple paths between source and destinations
- Convert the problem into Markov decision process:
 - (S, A, R, P), where s ∈ S set of states, a ∈ A set of actions, R(s, a, s') represents reward and probability P for executing action in state s.



- RL agent at source: Chooses best path to send flows
 - Trial-and-error to learn "optimal" paths: not just shortest path
 - Once learned, it knows which one to choose for arriving flow

Links with Software Defined Networks (SDN)



Designing the Neural Network

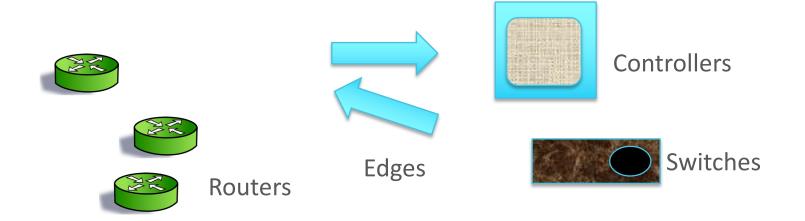
<u>Action</u> <u>State</u> Predict congestion Hidden 1 Hidden 4 Move traffic to Output 1 Current loss on links path A Hidden 2 Hidden 5 Move traffic to Network utilization Input 3 Output 2 path B Hidden 3 Hidden 6 File transfer time

Challenge: Designing the Training Environment

Working with Network Emulators

- Mininet, NS2, CloudSim, examples of simulating network behavior
- Real-world is very different from simulations/emulator
 - Noise,
 - lack of data,
 - too diverse data tools,
 - connection challenges
- Emulators not designed to test ML advances
- Do not scale to our problem

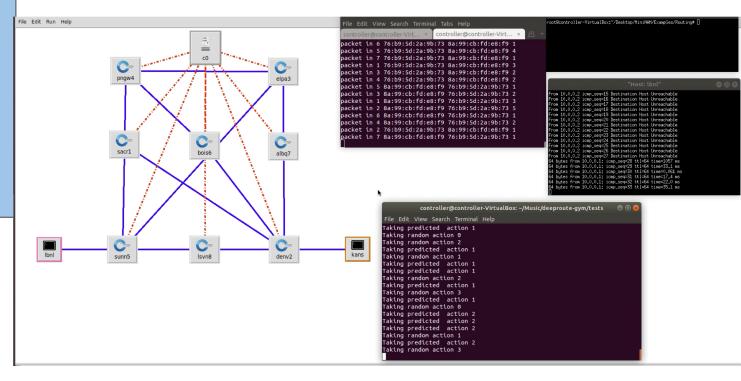
Designing our own Network Gym: NetGame



- Agent-based modelling
- Simulating traffic with complex needs
- Scaling network up dynamically (complex scenarios, Multi-RL)
- Link in real data sets to fuel our simulation
- More control to understand why ML decisions are being made

Deploying RL in Mininet Simulation

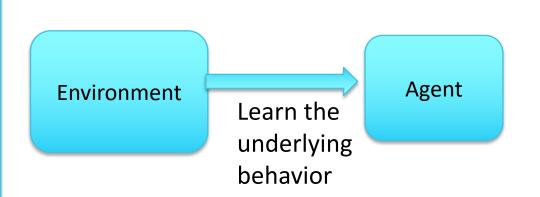
State: Current network utilization Action: Path to take Reward: Flow completion time Optimize: best path

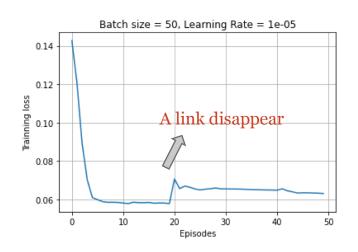


^{*}DeepRoute: Herding Elephant and Mice Flows with Reinforcement Learning, MLN'2019

Challenge: Working with Dynamic Data

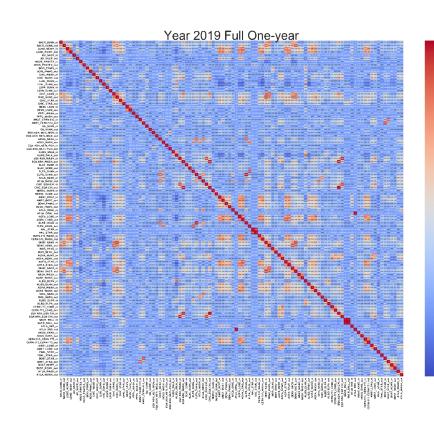
Networks Change





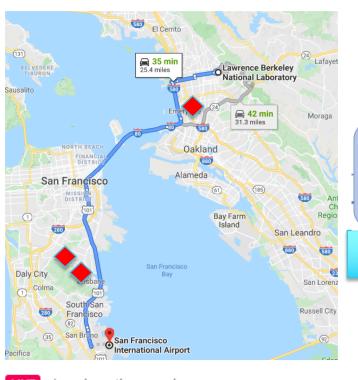
- Can the DRL Agent adapt?
- Model Predictive Control to learn underlying physical laws in the system
 Data > underlying laws > Agent

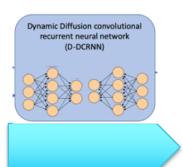
Traffic patterns Constantly Change

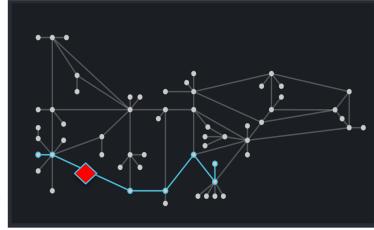


- Correlation of traffic over year 2019
- No underlying patterns, seasonality because science transfers are erratic
- LSTM models were better to learn short term predictions. Long term patterns don't affect us.
- Feed into graph neural networks to enhance predictions

Example: Predicting Congestion Ahead of Time

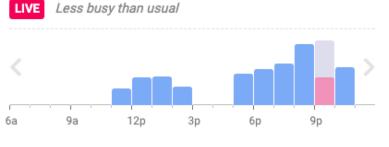






With Real-time Data

- Loss Perfsonar
- Traffic statistics SNMP
- Logs NetFlow



NetPredict for Just-in-Time Flows

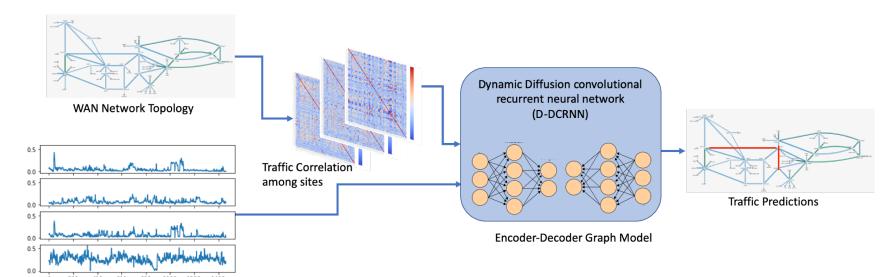
(Linked with ESnet portal)

*SC19 Demo Network Research Exhibitions

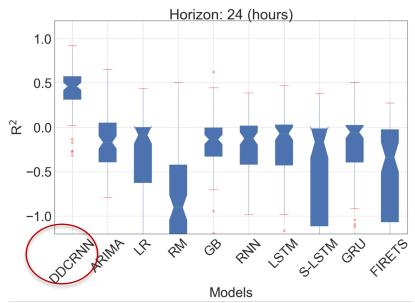
- Deployed on Google Cloud Platform
 - Different models can run at the same time to compute least congested paths
 - Estimates transfer completion time
- Trust dashboard
 - Real-time ML performance
 - Build engineer's confidence in predictions



Graph neural networks to improve predictons



GNN high order of accuracy compared to simple LSTM approaches

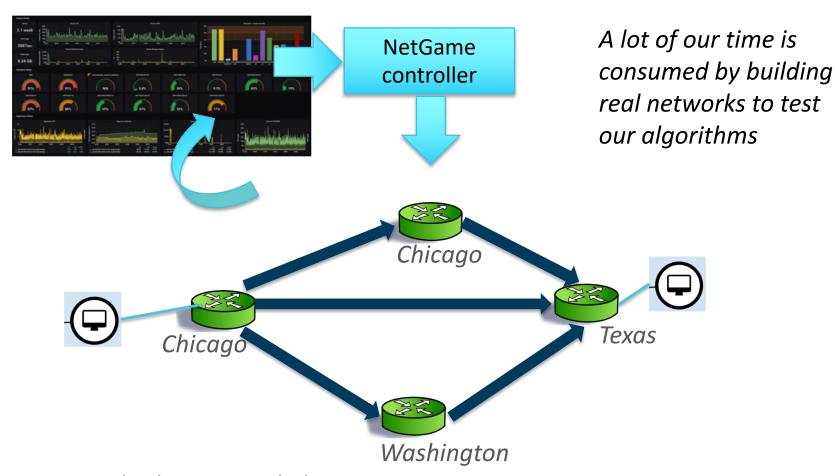


Traffic Statistics

^{*}Data-driven Learning to Predict WAN Network Traffic, SNTA'20

Challenge: Deploying Theory to Practical

Building Our Own Topology



- ESnet and other network data
- lack of labelled data

Gathering data, OpenStack nodes ...



Displaying 5 items

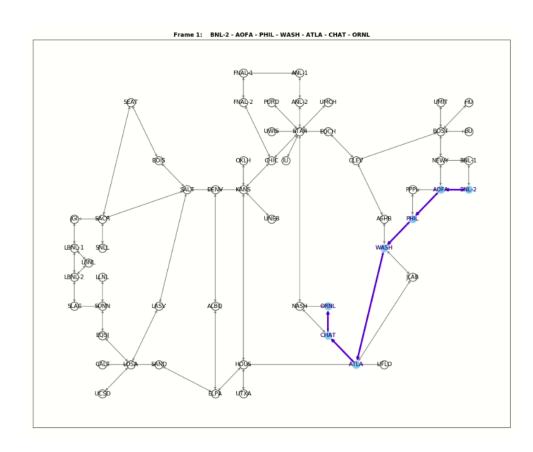
	Instance Name	Image Name	IP Address	Flavor	Key Pair	Status	Availability Zone	Task	Power State	Age	Actions
	perfSONAR-node	CC-CentOS7	192.168.100.16, 192.5.87.157	baremetal	uc-mc4n-key	Active	nova	None	Running	2 days, 3 hours	Attach Interface 🔻
0	Faulty node	CC-Ubuntu16.04	192.168.100.18, 192.5.87.38, 192.168.100.13	baremetal	uc-mc4n-key	Active	nova	None	Running	6 days, 4 hours	Attach Interface ▼
	Grafana-node	CC-Ubuntu16.04	192.168.100.19, 192.5.87.87	baremetal	uc-mc4n-key	Active	nova	None	Running	6 days, 20 hours	Attach Interface ▼
0	Prometheus-node	CC-Ubuntu16.04	192.168.100.11, 192.5.87.178	baremetal	uc-mc4n-key	Active	nova	None	Running	6 days, 21 hours	Attach Interface ▼
	SRC-1-node	CC-Ubuntu16.04	192.168.100.17, 192.168.100.15, 192.5.87.186	baremetal	uc-mc4n-key	Shutoff	nova	None	Shut Down	6 days, 21 hours	Start Instance 🔻

Displaying 5 items

Challenge: RL is promising to other Sciences too

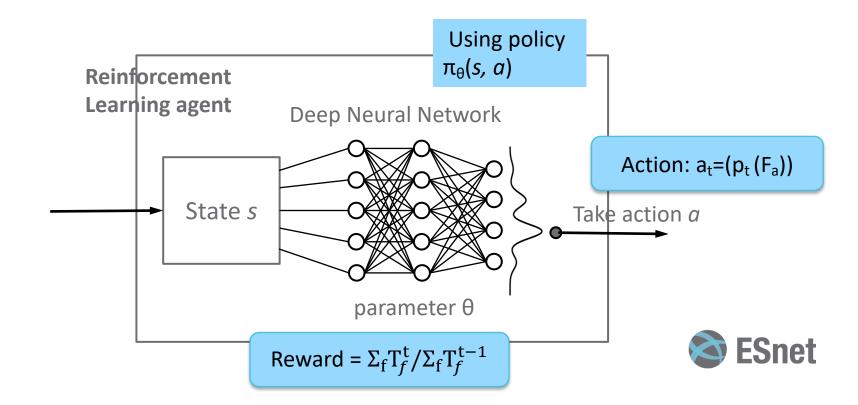
DQN (RL) for routing traffic

- Optimization problems in dynamic systems
- Not use Djikstra's shortest possible route finding
- HPC load balancing

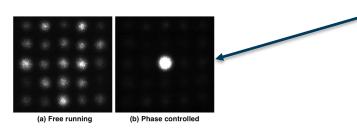


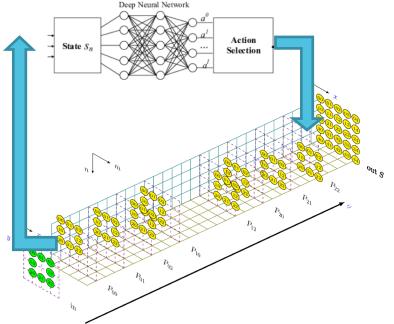
DRL applicable in many areas

Replace the state and action to challenges in other dynamic systems

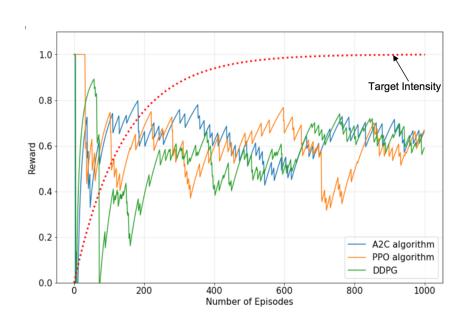


DRL for 8-way Laser combining

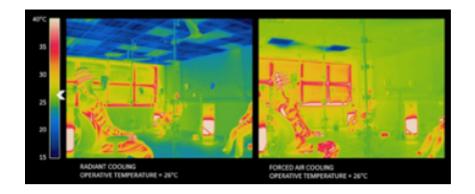




- System self-learns to find a concentratedbeam
- Comparing RL approaches for real-time control
- Working with physicists to deploy DRL on GPUs/FPGAs for high-speed control



DRL for FLEXLAB*





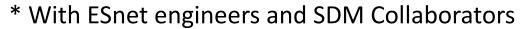
- DRL to optimize battery life and building comfort
- Hyperparameter tuning for real Flexlab deploys for temperature and cooling chambers
- Working with Energy technologists and experts

Temperature variability with different algorithms

Summary: Building our own Monitors/Controllers for optimizing traffic engineering

- Deploying algorithms to work with real-time data
- Building our own Cloud data management systems that communicate with our simulators to train offline and online models
- We have learned RL is a strong approach, but needs tweaking to problem to be beneficial that traditional approaches
- Working with Engineers/Domain scientists:
 - Deploying controllers in testbeds
 - Cost of processing data, training models and model reliability

DAPHNE Team* (Deep and Autonomous High-Performance Networks)



https://sites.google.com/lbl.gov/daphne

mkiran@es.net

Feel free to reach out with questions/interests!

